

Anti-Pillow Defect Leaded Solder Paste SE48-M956-2 & SS48-M956-2

■ Features

- 1) Ensures outstanding continual printability for fine pitch (0.5mm/20mil) at even super fine pitch (0.4mm/16mil) applications.
- 2) Carefully selected thixotropic materials ensure excellent slump resistance and significantly reduces the occurrences of bridging and solder beading.
- 3) Assures joining strength due to a sound solder fillet formation with excellent wetting.
- 4) Reduces the occurrence of voids significantly, thanks to a carefully selected flux formation system based on thorough research and development.
- 5) From the specifically designed thermal stable flux medium, faster wetting is achieved which helps to eliminate pillow joints.

■ Specifications

Application			Printing - Stencil		
	Product		SE48-M956-2 SS48-M956-2		
Alloy	Composition (%)		Sn63, Pb37	Sn62, Pb36, Ag2	
	Shape		Spherical		
	Melting point (°C)		183	179 - 190	
	Particle size (μ m)		20 - 45		
	Halide content (%)		0.0		
	Surface insulation resistance *1	Initial value (Ω)	> 1 × 10 ¹²		
Flux		After humidification (Ω)	> 1 × 10 ¹¹		
	Aqueous solution resistivity *2 (Ωcm)		> 5 × 10 ⁴		
	Flux type *3		ROL0		
	Flux content (%)		10		
	Viscosity *4 (Pa.S)		200		
	Copper plate corrosion *5		Passed		
Product	Solder spread factor (%)		90		
Pro	Tack time		> 36 hours		
	Shelf life (below 10°C)		6 months		
	Alloy option		SSA48-M956-2 ; Sn62.6, Pb36.8, Ag0.4, Sb0.2		

1.	SIR	. 40°C × 90%RH × 96Hr
----	-----	-----------------------

2. Aqueous solution resistivity In accordance with MIL specifications.

3. Flux type In accordance with ANSI/J-STD-004

5. Copper plate corrosion..... In accordance with JIS.

■ Printing

(Continual printing at 50mm/sec., w/out cleaning)

0.4mm pitch (10th print)

0.3mm pitch (10th print)

Tack time

■ Heat slump

· Heat profile: 150°C × 5min.

· Test method : JIS Z 3284

■ Voiding

Power Tr. (SnPb)

BGA (SnPb)

■ Quick wetting speed

In the wetting test, the chip capacitor was placed on one time reflowed solder and reflowed again to simulate the pillow phenomenon. SS48-M956-2 started to wet to the component at 190°C, whilst the conventional paste started at 215°C. Such a quicker wetting action will help to allow sufficient time for the solder to wet/merge completely with the components and prevent the hidden pillow defects.

Reflow again Reflow solder with component

Product characteristics

Fine pitch printability Anti-pillow Stencil idle time 2 Residue color Tack time Slump resistance Void **□**M956-2 Conventional paste wetting Bridge/bead

Recommended reflow profile

*Specifications are subject to change.

KOKI COMPANY LIMITED

32-1, Senju Asahi-cho, Adachi-ku, Tokyo 120-0026 Tel: (03) 5244-1521 Fax: (03) 5244-1525 www.ko-ki.co.jp

